Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3076, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594248

RESUMO

The rational use and conversion of energy are the primary means for achieving the goal of carbon neutrality. MXenes can be used for photothermal conversion, but their opaque appearance limits wider applications. Herein, we successfully develop visible-light transparent and UV-absorbing polymer composite film by solution blending the MXene with polyethylene and then vacuum pressing. The resulting film could be quickly heated to 65 °C under 400 mW cm-2 light irradiation and maintained over 85% visible-light transmittance as well as low haze (<12%). The findings of the indoor heat insulation test demonstrate that the temperature of the glass house model covered by this film was 6-7 °C lower than that of the uncovered model, revealing the potential of transparent film in energy-saving applications. In order to mimic the energy-saving condition of the building in various climates, a typical building model with this film as the outer layer of the window was created using the EnergyPlus building energy consumption software. According to predictions, they could reduce yearly refrigeration energy used by 31-61 MJ m-2, and 3%-12% of the total energy used for refrigeration in such structures. This work imply that the film has wide potential for use as transparent devices in energy-related applications.

2.
Sci Total Environ ; 926: 171984, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547983

RESUMO

Mesoporous silica nanoparticles (MSNs) are efficient carriers of drugs, and are promising in developing novel pesticide formulations. The cotton aphids Aphis gossypii Glover is a world devastating insect pest. It has evolved high level resistance to various insecticides thus resulted in the application of higher doses of insecticides, which raised environmental risk. In this study, the MSNs based pesticide/antibiotic delivery system was constructed for co-delivery of ampicillin (Amp) and imidacloprid (IMI). The IMI@Amp@MSNs complexes have improved toxicity against cotton aphids, and reduced acute toxicity to zebrafish. From the 16S rDNA sequencing results, Amp@MSNs, prepared by loading ampicillin to the mesoporous of MSNs, greatly disturbed the gut community of cotton aphids. Then, the relative expression of at least 25 cytochrome P450 genes of A. gossypii was significantly suppressed, including CYP6CY19 and CYP6CY22, which were found to be associated with imidacloprid resistance by RNAi. The bioassay results indicated that the synergy ratio of ampicillin to imidacloprid was 1.6, while Amp@MSNs improved the toxicity of imidacloprid by 2.4-fold. In addition, IMI@Amp@MSNs significantly improved the penetration of imidacloprid, and contributed to the amount of imidacloprid delivered to A. gossypii increased 1.4-fold. Thus, through inhibiting the relative expression of cytochrome P450 genes and improving penetration of imidacloprid, the toxicity of IMI@Amp@MSNs was 6.0-fold higher than that of imidacloprid. The greenhouse experiments further demonstrated the enhanced insecticidal activity of IMI@Amp@MSNs to A. gossypii. Meanwhile, the LC50 of IMI@Amp@MSNs to zebrafish was 3.9-fold higher than that of IMI, and the EC50 for malformation was 2.8-fold higher than IMI, respectively, which indicated that the IMI@Amp@MSNs complexes significantly reduced the environmental risk of imidacloprid. These findings encouraged the development of pesticide/antibiotic co-delivery nanoparticles, which would benefit pesticide reduction and environmental safety.


Assuntos
Afídeos , Inseticidas , Nanosferas , Animais , Inseticidas/metabolismo , Peixe-Zebra , Resistência a Inseticidas/genética , Neonicotinoides/metabolismo , Nitrocompostos/toxicidade , Nitrocompostos/metabolismo , Afídeos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ampicilina
3.
Mater Horiz ; 11(7): 1787-1796, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38315195

RESUMO

Passive radiative cooling (PRC) that realizes thermal management without consuming any energy has attracted increasing attention. Unfortunately, polymer fibers with radiative cooling function fabricated via a facile, continuous, large-scale and eco-friendly method have been scarcely reported. Herein, polyethylene fibers containing directional microchannels (PFCDM) are facilely fabricated via melt extrusion and water leaching. Interestingly, fabric based on such hydrophobic PFCDM shows high sunlight reflectivity (93.6%), and mid-infrared emissivity (93.9%), endowing it with remarkable PRC performance. Compared with other reported examples, the as-prepared PFDCM fabric has the highest cooling power (i.e., 104.285 W m-2) and temperature drop (i.e., 27.71 °C). Furthermore, decent self-cleaning performance can keep the PFCDM fabric away from contamination and enable it to retain an excellent radiative cooling effect. The method proposed to fabricate PFCDM in this paper will widen the potential application of thermoplastic polyolefins in the field of radiative cooling.

4.
Int J Biol Macromol ; 263(Pt 1): 130283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378113

RESUMO

Adsorption materials are a cost-effective and simple method for oil spill remediation, but their efficiency is limited by high crude oil viscosity. Additionally, non-degradable materials pose another risk of secondary pollution, such as microplastic debris. Here, an environmentally-friendly stereo-complex polylactide composite (SCC) aerogel were developed via water-assisted thermally induced phase separation. The SCC with 3 wt% carbon nanotubes had a hierarchical structure of micro/nanoscale pores and high content of stereo-complex crystallites (35.7 %). Along with the excellent water repellency (water contact angle: 157°), SCC aerogel was 2.7 times as resistant to hydrolysis than poly(l-lactide) aerogel (Ph = 13, 37 °C). Additionally, a maximum absorption capacity of 41.2 g g-1 and over 97 % oil/water separation efficiency after 10 cycles were obtained in low viscosity conditions; while in high viscosity conditions, it displayed excellent photothermal performance, reaching a surface temperature of 85 °C under 1 sunlight, reducing crude oil absorption time from 42 min to 60 s (97.6 %-time savings). Moreover, it facilitated continuous crude oil spill recovery under sunlight with an adsorption rate of 3.3 × 104 kg m-3 h-1. The SCC aerogel presents a potential route for utilizing solar energy in crude oil adsorption applications without additional environmental burden.


Assuntos
Nanotubos de Carbono , Petróleo , Poliésteres , Adsorção , Plásticos
5.
Polymers (Basel) ; 16(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257067

RESUMO

The synergistic effect between different fillers plays a crucial role in determining the performance of composites. In this work, spherical boron nitride (BN) and flaky BN are used as hybrid fillers to improve the thermal conductivity (TC) of high-density polyethylene (HDPE) composites. A series of HDPE composites were prepared by adjusting the mass ratio (1:0, 4:1, 2:1, 1:1, 1:2, 1:4, and 0:1) of spherical BN and flaky BN. The SEM results indicate that the spherical BN (with a particle size of 3 µm) effectively filled the gaps between the flaky BN (with a particle size of 30 µm), leading to the formation of more continuous heat conduction paths with the composite. Remarkably, when the mass ratio of spherical BN to flaky BN was set to 1:4 (with a total BN filling amount of 30 wt%), the TC of the composite could reach up to 1.648 Wm-1K-1, which is obviously higher than that of the composite containing a single filler, realizing the synergistic effect of the hybrid fillers. In addition, the synergistic effect of fillers also affects the thermal stability and crystallization behavior of composites. This work is of great significance for optimizing the application of hybrid BN fillers in the field of thermal management.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38040021

RESUMO

Passive and active wearable heaters have received widespread attention due to their efficient utilization of solar energy and all-weather heating capabilities, but the current challenges are their preparation processes being time-consuming and equipment expensive. Herein, a simple and facilitated preparation method for the multifunctional wearable heater was developed, which springs Ag nanoparticles on the shish-kebab superstructure film via deposited melanin-like polydopamine as the adhesive. The light absorption ability of the resultant wearable heater in the visible region can be significantly enhanced by the addition of polydopamine, realizing a highly efficient photothermal conversion ability. Accordingly, it can achieve rapid warming ability whether passive heating (up to 45 °C about 60 s at 100 mW/cm2) or active heating (up to 72 °C about 40 s at 0.6 V), compared to ordinary cotton fabric. In addition, it can realize a 6.3 °C temperature difference with Cotton, showing excellent heat preservation ability. This study demonstrates a simple and low-cost approach for the prepared shish-kebab superstructure-based wearable heaters.

7.
ACS Nano ; 17(21): 22071-22081, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37901939

RESUMO

Photoelectrochemical (PEC) water splitting is an attractive strategy to convert solar energy to hydrogen. However, the lifetime of PEC devices is restricted by the photocorrosion of semiconductors and the instability of co-catalysts. Herein, we report a feasible in situ inherent cross-linking method for stabilizing semiconductors that uses a CoFe-dispersed polyacrylamide (PAM) hydrogel as a transparent protector. The CoFe-PAM hydrogel protected BiVO4 (BVO) photoanode reached a photocurrent density of 5.7 mA cm-2 at 1.23 VRHE under AM 1.5G illumination with good stability. The PAM hydrogel network improved the loading of Fe sites while enabling the retention of more CoFe co-catalysts and increasing the electron density of the reaction active sites, further improving the PEC performance and stability. More importantly, by tuning the polymerization network, we pioneer the use of quasi-solid-state electrolytes in photoelectrochemistry, where the high concentration of ionic solvent in the PAM hydrogel ensures effective charge transport and good water storage owing to the hydrophilic and porous structure of the hydrogel. This work expands the scope of PEC research by providing a class of three-dimensional hydrogel electrocatalysts and quasi-solid-state electrolytes with huge extension potential, and the versatility of these quasi-solid-state electrolytes can be employed for other semiconductors.

8.
Mater Horiz ; 10(11): 5060-5070, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37661692

RESUMO

Incorporating radiative cooling photonic structures into the cooling systems of buildings presents a novel strategy to mitigate global warming and boost global carbon neutrality. Photonic structures with excellent solar reflection and thermal emission can be obtained by a rational combination of different materials. The current preparation strategies of radiative cooling materials are dominated by doping inorganic micro-nano particles into polymers, which usually possess insufficient solar reflectance. Here, a porous polymer metafoam was prepared with polycarbonate (PC) and polydimethylsiloxane (PDMS) using a simple thermally induced phase separation method. The metafoam exhibits strong solar reflectivity (97%), superior thermal emissivity (91%), and low thermal conductivity (46 mW m-1 K-1) due to the controllable morphology of the randomly dispersed light-scattering air voids. Cooling tests demonstrate that the metafoam could reduce the average temperature by 5.2 °C and 10.2 °C during the daytime and nighttime, respectively. In addition, the simulation of a cooling energy system of buildings indicates that the metafoam can save 3.2-26.7 MJ m-2 per year in different cities, which is an energy-saving percentage of 14.7-41%. The excellent comprehensive performances, including the passive cooling property, thermal insulation and self-cleaning of the metafoam makes it appropriate for practical outdoor applications, exhibiting its great potential as an energy-saving building cooling material.

9.
ACS Appl Mater Interfaces ; 15(36): 42501-42510, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37641500

RESUMO

Electrocatalysis in neutral conditions is appealing for hydrogen production by utilizing abundant wastewater or seawater resources. Single-atom catalysts (SACs) immobilized on supports are considered one of the most promising strategies for electrocatalysis research. While they have principally exhibited breakthrough activity and selectivity for the hydrogen evolution reaction (HER) electrocatalysis in alkaline or acidic conditions, few SACs were reported for HER in neutral media. Herein, we report a facile strategy to tailor the water dissociation active sites on the NiFe LDH by inducing Mo species and an ultralow single atomic Pt loading. The defected NiFeMo LDH (V-NiFeMo LDH) shows HER activity with an overpotential of 89 mV at 10 mA cm-2 in 1 M phosphate buffer solutions. The induced Mo species and the transformed NiO/Ni phases after etching significantly increase the electron conductivity and the catalytic active sites. A further enhancement can be achieved by modulating the ultralow single atom Pt anchored on the V-NiFeMo LDH by potentiostatic polarization. A potential as low as 37 mV is obtained at 10 mA cm-2 with a pronounced long-term durability over 110 h, surpassing its crystalline LDH materials and most of the HER catalysts in neutral medium. Experimental and density functional theory calculation results have demonstrated that the synergistic effects of Mo/SAs Pt and phase transformation into NiFe LDH reduce the kinetic energy barrier of the water dissociation process and promote the H* conversion for accelerating the neutral HER.

10.
Macromol Rapid Commun ; 44(20): e2300333, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573031

RESUMO

Oil spills and the presence of oily wastewater have resulted in substantial ecological damage. Superhydrophobic polymer foam with selectivity and adsorption capacity is a promising candidate for efficient oil-water separation. In this study, a method that combines phase separation and silica coating to produce superhydrophobic thermoplastic polyurethane (TPU) foam is proposed. The TPU foam demonstrates superhydrophobicity with a water contact angle of 155.62°, and exhibits a maximum saturated adsorption capacity of 54.11 g g-1 . Furthermore, the foam can be utilized as a filter for oil-water separation, maintaining its filtration efficiency (41.2 m3  m2  h-1 ) even after ten filtration cycles.


Assuntos
Poliuretanos , Dióxido de Silício , Água , Interações Hidrofóbicas e Hidrofílicas
11.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513388

RESUMO

The electronic absorption and vibrational spectra of deprotonated 5,10,15,20-tetrakis(p-hydroxyphenyl)porphyrin (THPP) are studied as a function of solvent polarity in H2O-DMF, H2O-acetone, H2O-methanol, and DMF-acetone mixtures. The maximum absorption wavelength (λmax) of the lowest energy electronic absorption band of deprotonated THPP shows an unusual solvatochromism-a bathochromic followed by a hypsochromic shift with reduced polarity. According to the correlation analysis, both specific interactions (H-bonds) and nonspecific interactions affect the spectral changes of this porphyrin. Furthermore, the solvent polarity scale ET(30) can explain both shifts very well. At higher polarity (ET(30) > 48), THPP exists as a hyperporphyrin. The ET(30) is linear with λmax and a decrease in solvent polarity is accompanied by a bathochromic shift of λmax. These results can be rationalized in terms of the cooperative effects of H-bonds and nonspecific interactions on the spectra of hyperporphyrin. At relatively low polarity (45.5 < ET(30) < 48), hyperporphyrin gradually becomes Na2P as ET(30) reaches the critical value of 45.5. The spectrum of the hyperporphyrin turns into the three-band spectrum of the metalloporphyrin, which is accompanied by a hypsochromic shift of λmax.

12.
Proc Natl Acad Sci U S A ; 120(27): e2300493120, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364112

RESUMO

Fast transport of charge carriers in semiconductor photoelectrodes are a major determinant of the solar-to-hydrogen efficiency for photoelectrochemical (PEC) water slitting. While doping metal ions as single atoms/clusters in photoelectrodes has been popularly used to regulate their charge transport, PEC performances are often low due to the limited charge mobility and severe charge recombination. Here, we disperse Ru and P diatomic sites onto hematite (DASs Ru-P:Fe2O3) to construct an efficient photoelectrode inspired by the concept of correlated single-atom engineering. The resultant photoanode shows superior photocurrent densities of 4.55 and 6.5 mA cm-2 at 1.23 and 1.50 VRHE, a low-onset potential of 0.58 VRHE, and a high applied bias photon-to-current conversion efficiency of 1.00% under one sun illumination, which are much better than the pristine Fe2O3. A detailed dynamic analysis reveals that a remarkable synergetic ineraction of the reduced recombination by a low Ru doping concentration with substitution of Fe site as well as the construction of Ru-P bonds in the material increases the carrier separation and fast charge transportation dynamics. A systematic simulation study further proves the superiority of the Ru-P bonds compared to the Ru-O bonds, which allows more long-lived carriers to participate in the water oxidation reaction. This work offers an effective strategy for enhancing charge carrier transportation dynamics by constructing pair sites into semiconductors, which may be extended to other photoelectrodes for solar water splitting.

13.
Nat Commun ; 14(1): 2640, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156781

RESUMO

Although much effort has been devoted to improving photoelectrochemical water splitting of hematite (α-Fe2O3) due to its high theoretical solar-to-hydrogen conversion efficiency of 15.5%, the low applied bias photon-to-current efficiency remains a huge challenge for practical applications. Herein, we introduce single platinum atom sites coordination with oxygen atom (Pt-O/Pt-O-Fe) sites into single crystalline α-Fe2O3 nanoflakes photoanodes (SAs Pt:Fe2O3-Ov). The single-atom Pt doping of α-Fe2O3 can induce few electron trapping sites, enhance carrier separation capability, and boost charge transfer lifetime in the bulk structure as well as improve charge carrier injection efficiency at the semiconductor/electrolyte interface. Further introduction of surface oxygen vacancies can suppress charge carrier recombination and promote surface reaction kinetics, especially at low potential. Accordingly, the optimum SAs Pt:Fe2O3-Ov photoanode exhibits the photoelectrochemical performance of 3.65 and 5.30 mA cm-2 at 1.23 and 1.5 VRHE, respectively, with an applied bias photon-to-current efficiency of 0.68% for the hematite-based photoanodes. This study opens an avenue for designing highly efficient atomic-level engineering on single crystalline semiconductors for feasible photoelectrochemical applications.

14.
ACS Appl Mater Interfaces ; 15(13): 17188-17194, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946512

RESUMO

Due to global warming and the energy crisis, incorporating passive radiative cooling into personal thermal management has attracted extensive attention. However, developing a wearable textile that reflects incoming sunlight and allows mid-infrared radiation transmission is still a tough challenge. Herein, a shish-kebab superstructure film was produced via a flow-induced crystallization strategy for personal radiative cooling. The resulting film endowed a high infrared transmittance (87%) and improved sunlight reflectivity (83%). A device was developed to simulate the human body skin, and the temperatures of the shish-kebab film were 2.5 and 2.6 °C lower than that of traditional textile in outdoor and indoor tests, respectively. In order to make the shish-kebab film more wearable, a series of modifications were then carried out. This study demonstrates the substantial potential to personal thermal management textiles.

15.
Macromol Rapid Commun ; 44(10): e2300065, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36960581

RESUMO

Recent advances in the cell structure regulation and performances improvement of porous poly(lactic acid) materials (PPMs) are systematically reviewed in this feature article. First, the typical processing methods, including template method, non-solvent induced phase separation, freeze-drying, and supercritical CO2  foaming, of PPMs are introduced emphatically. Their various cell morphologies by different processing methods are summarized: finger-like, honeycomb-like, fiber-like, through cell, open cell, closed cell, ball-like, and flower-like. Meanwhile, the transformation among different cell morphologies as well as the changes in cell size and cell density, having impact on the performances, is described. Second, the influence of stereo-complex crystals on the cell structure of PPMs is emphatically reviewed. Furthermore, the relationships between cell structure and properties that includes mechanical properties, thermal stability, heat insulation, and hydrophobicity, are elaborated. Eventually, the issues of PPMs worthy of further study are discussed.


Assuntos
Ácido Láctico , Engenharia Tecidual , Porosidade , Engenharia Tecidual/métodos , Teste de Materiais , Ácido Láctico/química , Poliésteres
16.
Sci Adv ; 9(1): eade4589, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598972

RESUMO

Photoelectrochemical (PEC) water splitting that functions in pH-neutral electrolyte attracts increasing attention to energy demand sustainability. Here, we propose a strategy to in situ form a NiB layer by tuning the composition of the neutral electrolyte with the additions of nickel and borate species, which improves the PEC performance of the BiVO4 photoanode. The NiB/BiVO4 exhibits a photocurrent density of 6.0 mA cm-2 at 1.23 VRHE with an onset potential of 0.2 VRHE under 1 sun illumination. The photoanode displays a photostability of over 600 hours in a neutral electrolyte. The additive of Ni2+ in the electrolyte, which efficiently inhibits the dissolution of NiB, can accelerate the photogenerated charge transfer and enhance the water oxidation kinetics. The borate species with B─O bonds act as a promoter of catalyst activity by accelerating proton-coupled electron transfer. The synergy effect of both species suppresses the surface charge recombination and inhibits the photocorrosion of BiVO4.

17.
Macromol Rapid Commun ; 44(1): e2100916, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35080287

RESUMO

Size regulation of polydopamine nanoparticles (PDA NPs) is vital to melanin-inspired materials. The general strategy usually focuses on tuning of the reaction parameters which could affect the dopamine (DA) monomer polymerization process, such as pH, temperature, monomer concentration, etc. The reaction between boronic acids and catechols to form boronic esters has been widely applied in many fields, but little attention has been paid in the size regulation of PDA NPs. Here, it is speculated that the fine size regulation of PDA NPs can be directly achieved by using boronic acids and Lewis base molecules. It is found that these issues could indeed significantly affect the stability of the boronic esters formed by boronic acids and DA, which may further inhibit the monomer polymerization kinetics and tune the particle size of the resulting PDA NPs. It is also found that the several intrinsic properties of PDA NPs such as the free radical scavenging ability, UV spectral absorption, photothermal behavior, and structural color all change with the particle size. It is believed that this work can provide new opportunities for fabricating melanin-inspired PDA NPs with well controlled size and properties.


Assuntos
Bases de Lewis , Nanopartículas , Ácidos Borônicos , Indóis/química , Nanopartículas/química
19.
Sci Adv ; 8(45): eadc9394, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367936

RESUMO

Unlike classic synthetic stimulus-responsive and shape-memory materials, which remain limited to fixed responses, the responses of living systems dynamically adapt based on the repetition, intensity, and history of stimuli. Such plasticity is ubiquitous in biology, which is profoundly linked to memory and learning. Concepts thereof are searched for rudimentary forms of "intelligent materials." Here, we show plasticity of electroconductivity in soft ferromagnetic nickel colloidal supraparticles with spiny surfaces, assembling/disassembling to granular conducting micropillars between two electrodes driven by magnetic field B. Colloidal jamming leads to conduction hysteresis and bistable memory upon increasing and subsequently decreasing B. Abrupt B changes induce larger conduction changes than gradual B-changes. Periodic B pulsing drives to frequency-dependent facilitation or suppression of conductivity compared to exposing the same constant field. The concepts allow remotely controlled switching plasticity, illustrated by a rudimentary device. More generally, we foresee adaptive functional materials inspired by response plasticity and learning.

20.
ACS Nano ; 16(10): 15927-15934, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36166823

RESUMO

Studies of the diffusion dynamics of magnetic skyrmions have generated widespread interest in both fundamental physics and spintronics applications. Here we report the magnetic-field-assisted diffusion motion of skyrmions in a microstructured chiral FeGe magnet. We demonstrate the enhancement of diffusion motion of magnetic skyrmions that is manipulated and driven by an oscillatory magnetic field. Further, the directed diffusion of skyrmions is observed when an in-plane field was introduced to break the symmetry of the system. Finally, we demonstrate the application of a magnetic field can induce an arrangements transition of skyrmions assemble in microstructure, that is, from a stiff hexagonal lattice to a weak interactional isotropic state. By using a step-ascended magnetic field we finished the observation of a particle-like diffusive motion for magnetic skyrmions that transport from high-concentration regions to low-concentration regions and the diffusion flux is proportional to the concentration gradient followed Fick's law.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...